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Abstract

A simple, analytic expansion about the critical point appears capable of adequate

representation for the compression factor in the single phase region near the critical point.

The equation requires Tc, Pc, Vc, and ω to predict the compression factor, and we have used

it to represent the behavior of methane, argon, carbon dioxide, and ethylene.  The scaling

hypothesis would indicate that this expansion is invalid, however the data seem to be

susceptible of such treatment.  The equation can also represent phase behavior in the critical

region.



A PRACTICAL EQUATION OF STATE VALID IN THE

CRITICAL REGION FOR PURE COMPOUNDS

Introduction

The behavior of pure fluids in the region of their critical points has received

considerable attention recently ranging from the classical description discussed by Landau

and Lifshitz (1959) to the development of scaling hypothesis  as evidenced by the works of

Griffiths (1965), Fisher (1967) and Levelt Sengers (1970).  Confirmation of these latter

methods requires high quality experimental data.  In this work, we present a functional

representation of the compression factor valid near the critical point in the single phase

region. The function resembles the classical description of Landau and Lifshitz (1959), but

it is explicit in the compression factor.

Development

The critical point imposes conditions which are useful for development of equations

of state.  These conditions in mathematical form are:
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where P is pressure, T is temperature, V is molar volume and ρ is density.  Higher order

derivatives may be zero also as discussed by Baher (1963).  Equations of state are usually

written as

P f T V Z f T V= =( , ) ( , ) or or  or ρ ρ (3)



where Z (=P/ρRT) is the compression factor and R is the gas constant, because these forms

require fewer terms than forms explicit in P and T.  The first and second derivatives of P

with respect to ρ  expressed in terms of Z and its derivatives are:
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In general, the nth derivative is:
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Often it is convenient to express Equation 6 as the derivative of Z with respect to ρ:
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where n = 1, 2,..., ∞.  Because density and temperature are inverse variables with respect to

Z,  the derivative of Z with respect to Τ at  constant ρ is:
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The cross derivative of Z with respect to temperature and density is:
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For n = 1, 2 at the critical point, Equation 7 becomes:
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T-ρ Plane.

On the T-ρ plane, isobars have shapes similar to isotherms on the P-ρ  plane such

that:

∂
∂ρ

∂
∂ρ

T T

P CP P CP







=






=
2

2 0  (12)

Following the same procedure as used for the P-ρ plane, we obtain:

∂
∂ρ ρ
Z Z

P CP

C

C







= − (13)

∂
∂ρ ρ

2Z Z

P CP

C

C
2 22







= (14)

Thus, the derivatives at the critical point are the same on both the T -ρ and P-ρ  planes.

P-T Plane.

On the P-T plane, the slope of the critical isochore equals the slope of the vapor

pressure curve at the critical point of a pure component.  The slope of the vapor pressure at

the critical point is proportional to the Reidel constant:
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where superscript σ denotes the saturation curve (vapor pressure) and ω is the acentric

factor.  In addition, the critical point is an inflection point for the vapor pressure/critical

isochore line:
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 Equations 7 - 9 at the critical point are:
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where the β denote cross partial derivatives of P with respect to t and ρ in reduced form.



An Equation of State for the Critical Region

If we assume that the equation of state is analytic in the single phase region (which

is possible even if the critical point is non-analytic in the two phase region) it is possible to

make a Taylor series expansion of Z = Z(T, ρ) about the critical point:
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which becomes through the second derivative terms:
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Substituting Equations 10,  11, 15 and 16 into Equation 21 results in:

Z Z

Z

T T

T

T T

T

T T

T

C

C

C

C

C

C

C

C

C

C

T C

C

C

C

− = − −





+ −





+

−( ) −





− −





+
−

−





−





−

















ρ ρ
ρ

ρ ρ
ρ

α
β

α
ρ ρ

ρ
ρ

2

2

1
1

1

(22)

Equation 22 is the simplest form of a Taylor's expansion which could fit data in the critical

region.  Obviously, higher derivative terms, if included, could extend the applicability of

the equation over a wider range.



Results

To test the applicability of this method, we have applied Equation 22 as well as the

corresponding equations including through 4th and 6th derivatives to predict the

compression factor of argon, carbon dioxide, and ethene, methane and nitrogen. Data

sources are from Gilgen et al. (1994), Duschek et al. (1990), Wagner (1997), Kleinrahm

and Wagner (1987) and Wagner (1997) for argon, carbon dioxide, ethene, methane and

nitrogen respectively.

Table 1 contains the properties of the substances used in this work.  Tables 2 - 6

contain the values (and standard deviations) of the cross derivatives obtained from fits of

the data using Taylor's expansions through the 2nd, 4th and 6th derivatives.  In each case,

the range of data has been restricted such that the deviations are random and within the

experimental error estimate.  For these data sets, the estimated standard deviation is 0.02 %.

Therefore, we have restricted the data such that the fits replicate about 60 - 70 % of the data

within 0.02 % and all of the data within 0.06 %.  Interestingly, it does not appear that the

third derivative of pressure with respect to density is zero although, in some cases, the

fourth derivative is zero and in all cases it is near zero.

Figures 1 - 3 illustrate the fits for Ar.  Figures 4 and 5 demonstrates the ability of the

4th and 6th derivative equations to correlate phase behavior near the critical point.  Figure 6

illustrates the ability of the 6th derivative equation to fit the values of Z along the saturation

curve.

Conclusions

A Taylor's expansion in temperature and density appears capable of correlating

compression factor data in the near critical region for pure substances within experimental

error.  Depending upon the number of derivatives included in the expansion,  the reduced

density range varies from about 0.9 - 1.02 up to 0.55 - 1.3.  The first non-zero derivative of

pressure with respect to density appears to be the third.  The expansion can describe both

single and two phase data.
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Table 1. Critical Parameters.

Substance
TC
K

PC
MPa

ρC
kg·m-3

ω

Argon 150.687 4.8630 535.60 0.0000

Carbon Dioxide 304.128 7.3773 467.60 0.2210

Ethene 282.350 5.0418 214.24 0.0865

Methane 190.551 4.5992 162.66 0.0120

Nitrogen 126.192 3.3958 313.30 0.0380



Table 2. Values of the parameters used in the Equation of State for argon.

Paramete
r

Estimate Standard
Error

Estimate Standard
Error

Estimate Standard
Error

β11 5.888 0.08 5.811 0.08 5.803 0.04

β12 12.066 1.8 15.456 0.88

β13 -56.29 8.4 -105.86 6.9

β14 -14 24

β15
471 36

β21 -9.615 0.43 -9.537 0.13

β22 14.33 4.2 25.38 2.1

β23 -259 16

β24 427 36

β31 13.08 1.8 16.709 0.44

β32 -69.1 4.4

β33 4 12

β41 13.36 1.2

β42 -77.05 5.4

β51
10.84 1.6

β03 3.241 0.82 3.165 0.43

β04 -64.62 5.6 -96.56 5.0

β05
165 19

β06
94 18

β30 -0.858 0.08 -0.809 0.02

β40 -0.519 0.51 0.012 0.07

β50
3.408 0.26

β60
3.507 0.97

Note: β ρ ∂
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Table 3. Values of the parameters used in the Equation of State for carbon dioxide.

Paramete
r

Estimate Standard
Error

Estimate Standard
Error

Estimate Standard
Error

β11 6.341 0.30 6.392 0.09 6.310 0.05

β12 32.34 2.6 41.78 2.2

β13 -179 16 -362 39

β14 -274 290

β15
8778 1413

β21 -11.166 0.33 -12.950 0.10

β22 3.72 4.1 49.32 3.8

β23 -907 99

β24 4097 671

β31 18.13 1.2 23.657 0.38

β32 -175 13

β33 450 83

β41 17.419 0.72

β42 -146.03 9.0

β51
-22.381 0.71

β03 29.42 1.4 63.11 3.3

β04 -272 13 -1105 83

β05
4966 661

β06
-3146 1709

β30 -0.823 0.03 -0.821 0.00

β40 -0.143 0.16 0.212 0.01

β50
2.737 0.03

β60
0.906 0.03

Note: β ρ ∂
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C
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Table 4. Values of the parameters used in the Equation of State for ethene.

Paramete
r

Estimate Standard
Error

Estimate Standard
Error

Estimate Standard
Error

β11 5.655 0.70 5.751 0.06 5.708 0.05

β12 26.93 1.7 31.38 1.5

β13 -1234 11 -232 17

β14 10 82

β15
3221 139

β21 -9.851 0.26 -10.921 0.24

β22 12.05 3.5 34.81 5.5

β23 -440 43

β24 1329 112

β31 16.08 1.3 23.74 1.1

β32 -137 14

β33 107 41

β41 25.42 2.9

β42 -181 18

β51
-7.72 5.4

β03 31.51 1.0 50.10 1.3

β04 -276.55 9.9 -800 26

β05
3550 151

β06
-3515 204

β30 -0.824351 0.01 -0.932 0.01

β40 0.115 0.04 0.057 0.03

β50
5.097 0.30

β60
8.29 1.1

Note: β ρ ∂
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Table 5. Values of the parameters used in the Equation of State for methane.

Paramete
r

Estimate Standard
Error

Estimate Standard
Error

Estimate Standard
Error

β11 5.000 0.22 5.082 0.07 5.107 0.04

β12 39.21 2.3 42.85 1.9

β13 -241 16 -340 46

β14 -1699 522

β15
26345 3565

β21 -9.488 0.28 -10.549 0.09

β22 30.76 4.4 64.45 4.0

β23 -1044 86

β24 4792 590

β31 19.41 1.4 25.259 0.42

β32 -201.26 9.2

β33 396 64

β41 23.688 0.77

β42 -270 12

β51
-30.81 1.5

β03 32.48 1.7 110.56 8.7

β04 -305 18 -2786 326

β05
22770 3570

β06
-49705 9731

β30 -0.803 0.01 -0.828 0.00

β40 0.042 0.09 0.109 0.01

β50
3.283 0.02

β60
2.104 0.07

Note: β ρ ∂
∂ρ ∂ij
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i
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j
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i j
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Table 6. Values of the parameters used in the Equation of State for nitrogen

Paramete
r

Estimate Standard
Error

Estimate Standard
Error

Estimate Standard
Error

β11 5.530 0.18 5.684 0.06 5.683 0.03

β12 23.60 1.4 25.33 0.87

β13 -109.99 7.9 -182 8.5

β14 123 33

β15
1244 48

β21 -9.658694 0.24 -11.256 0.16

β22 17.80 2.8 52.53 3.2

β23 -415 21

β24 779 48

β31 12.77 1.7 20.975 0.83

β32 -60.48 6.4

β33 -147 19

β41 34.41 2.5

β42 -135.57 9.3

β51
13.61 3.6

β03 11.799 0.51 20.052 0.57

β04 -127.46 4.3 -349.75 9.7

β05
1339 50

β06
-1032 55

β30 -0.805 0.01 -0.935 0.01

β40 0.089 0.03 -0.150778 0.02

β50
5.893 0.18

β60
10.886 0.58

Note: β ρ ∂
∂ρ ∂ij

C
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i j
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T
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Figure Captions

Figure 1. Correlation of Ar data with 2nd derivative equation.

Figure 2. Correlation of Ar data with 2nd derivative equation.

Figure 3. Correlation of Ar data with 2nd derivative equation.

Figure 4. Representation of two phase data using the 4th derivative expansion.  Solid   
circles are saturated vapor and filled circles are saturated liquid.

Figure 5. Representation of two phase data using the 6th derivative expansion.  Solid 
circles are saturated vapor and filled circles are saturated liquid.

Figure 6. Representated of the saturated values for Z using the 6th derivative expansion.
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